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Boltzmann approximation of transport properties in thermal lattice gases
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The transport properties of the Grosfils, Boon, and Lallemand model, a two-dimensional isotropic thermal
lattice-gas, are evaluated in the Boltzmann approximation. This includes the~self!-diffusion, for which we have
introduced an additional and passive color label to the otherwise identical particles in the system. Indepen-
dently, those results are confirmed by the use of the decay of the velocity autocorrelation function. The
theoretical predictions of the dynamical structure factors and results obtained by simulations show an excellent
agreement up to fairly large wave vectors. In the hydrodynamic limit of small wave vectors, the Landau-
Placzek formulas form an alternative and satisfactory description.
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I. INTRODUCTION

Lattice gas automata~LGA!, as introduced by Frisch
Hasslacher, and Pomeau~FHP! @1#, are particle-based meth
ods defined at the mesoscopic level and capable of sim
ing macroscopic fluid behavior. Stripped down to their ba
essence they describe particles, with discreet positions
velocities, that behave as hard-spheres and follow a cy
process of propagation to neighboring lattice sites and lo
collisions. The collisions typically conserve mass and m
mentum, and in the case of a thermal model, energy. Fro
statistical mechanics point of view the LGA provide a mea
to examine many-body systems with considerable gain
efficiency. The models exhibit exact conservation laws,
conditional stability, a large number of degrees of freedo
intrinsic spontaneous fluctuations, low memory consum
tion, and the inherent spatial locality of the update ru
make it ideal for parallel processing.

Most LGA models are restricted to conservation of ma
and momentum only. Obviously this approximation is
lowed if one is interested in the behavior of an atherm
fluid, or systems where the role of temperature is negligib
But in order to make the connection with true fluid dyna
ics, temperature should be included, otherwise even a sim
thermal gradient, or problems related to heat-conduction
Rayleigh-Bernard instability, cannot be simulated. Hen
the additional conservation of energy needs to be incor
rated in the collisions in order to obtain a thermal LGA. A
additional benefit is that the equilibrium transport propert
are dependent on both density and temperature, which
vides some extra freedom in tuning them with respect
each other without the necessity to change the collision ru

A thermal LGA model requires the notion of differen
energy levels. This can be done by allowing the particles
the LGA to move with different speeds~or allowing the par-
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ticles to have different masses!. A requirement for heat-
conduction, in addition to heat-diffusion, is that the mod
should allow population-mixing, i.e., the number of particl
in an energy level is not fixed but can change upon collisi
This requires at least three different energy levels. The
bits GBL model@2#, proposed by Grosfils, Boon, and Lalle
mand~GBL!, is such a model. It is a two-dimensional mod
formulated on a triangular lattice with hexagonal symmet
is macroscopically isotropic, and has no spurious invaria
This makes it a suitable candidate to study thermal phen
ena. Detailed studies have shown that the GBL model ex
its spontaneous fluctuations in equilibrium as produced i
real thermal fluid@2–4#.

In the Boltzmann approximation one neglects correlatio
between the particles. This assumption results in a solva
set of equations, which enables us to obtain the trans
properties. Although this approximation can be easily va
dated for low densities, it is remarkable that even for high
densities, where this assumption is not valid anymore, it s
provides acceptable results. Within this approximation on
able obtain the thermal diffusivity, the viscosity, and t
sound damping from the linearized collision operator. T
~self!-diffusion, however, is a property which cannot be o
tained directly, because it requires particles to be distingu
able. For this purpose we have expanded the GBL mode
include color, a method used by Hanon and Boon on a F
model @5#. This color ~red/blue! is a passive label on the
particles and does not affect the dynamics. This introdu
the extra conservations of red and blue particles, and a
tual exclusion such that a channel can be occupied by ei
a red or a blue particle, but not both. Hence, a color-bl
observer would not be able to distinguish this model fro
the normal GBL model.

The remainder of this paper is organized as follows.
Sec. II we will give a brief overview of the GBL model an
the results of the Boltzmann theory. In Sec. III we expa
those ideas by including color in the model. We derive t
necessary results for the Landau-Placzek formulas in Sec
and compare the theoretical predictions with results obtai
by computer simulations. In Sec. V we provide some use
results regarding the symmetries of the linearized collis
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operator, which we exploit to evaluate the transport coe
cients with minimal effort and higher numerical accurac
We finish in Sec. VI with a brief discussion of our results

II. BOLTZMANN APPROXIMATION

The GBL model is defined on a triangular lattice wi
hexagonal symmetry. Particles, residing on the nodes, ca
in rest or move with discrete velocities 1,A3, or 2 to a
~next!-nearest-neighboring node. This results in a maxim
of 19 particles per node, because no two particles at the s
node are allowed to have the same velocity~exclusion!. The
states at a node is characterized by the boolean occupa
numbersni , where i is the label running over all 19 chan
nels. Maximum collision rules are adopted, such that on c
lision an output state is randomly selected from all poss
states with the same mass, momentum, and energy, inclu
the input state itself. For a more detailed description we re
the reader to Ref.@2#.

Due to the boolean nature of LGA, the ensemble aver
of the occupation numbers in equilibrium, are described b
Fermi-Dirac distribution

f i5^ni&5
1

11e2a1 ~1/2! bci
2
2g•ci

, ~1!

where a, b, and g are Lagrange multipliers and fixed b
setting the value of the average densityr5( i f i , momentum
ru5( i f ici , and energy densityre5 1

2 ( i f ici
2 . b is the in-

verse temperature,a/b can be identified with the chemica
potential, andg is a parameter conjugate to the flow velocit
However, we will restrict ourselves to the zero-momentu
case by puttingg50.

The lattice-gas Boltzmann equation is given by@6,7#

f i~r1ci ,t11!5 f i~r,t !1D i~ f !, ~2!

where the collision termD i is a summation over all pre- an
post-collision statess ands8

D i~ f !5(
s,s8

P~s!A~s→s8!~si82si !. ~3!

The collision operator depends on the transition matrixA(s
→s8) and the probabilityP(s) of occurrence of a states.
The transition matrix is determined by the choice of the c
lision rules and can easily be obtained. The probabilityP(s),
however, is in general a complicated function due to cor
lations. For low densities, however, we can adopt the m
lecular chaos assumption and approximate the particles t
independent and not to exhibit any correlations. It follo
immediately that the probabilityP(s) in equilibrium can be
written as

P~s!5)
i

f i
si~12 f i !

12si. ~4!

It is hard to prove whether or not the Boltzmann approxim
tion is valid. Comparison with simulation has shown an e
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cellent agreement at low/intermediate densities, and a
sonably good agreement at high densities. At high dens
the collisions are correlated, due to ring collisions. Succe
ful theories has been developed to correct for such corr
tions, even for models violating detailed-balance@8,9#.

Fluctuation theory plays a crucial role in the analysis
microscopic models. Many techniques probe the dynamic
a system by introducing an externally induced field. An
ternative route is taken by the Green-Kubo relations, wh
transport phenomena are expressed as time integrals of
correlations functions. According to Onsager, the dist
bances created by a weak external perturbation decay in
same way as spontaneous fluctuations in equilibrium.
assume that the perturbations induced by intrinsic, sponta
ous fluctuations in the velocity field, are sufficiently weak
justify a first order perturbation analysis@4#. Therefore, we
can make a Taylor expansion of the collision term in t
neighborhood of the equilibrium distribution~1!. Only the
first order term in this expansion is required to evaluate
transport coefficients, yielding the linearized collision ope
tor

V i j 5
]D i

] f j
5

1

k j
(
s,s8

P~s!A~s→s8!~si82si !sj , ~5!

wherek i5(] f i /]a)b5 f i(12 f i) is the variance in the occu
pation number. Since the GBL model obeys detailed balan
it follows directly that (Vk) i j is symmetric@7#, where we
used thatk i j is a diagonal matrix with elementsk i . By in-
troducing the notion of an equivalence classC5(M ,P,E),
i.e., a set of all states having the same massM5( isi , mo-

mentum P5( isici , and energyE5( i
1
2 sici

2 , we can cast
this in a more suitable form for computational purposes.
noting that all statess in the same class have the same pro
ability of occurrence

;sPC P~s!5P~C!5eaM2bE1g•P)
i

~12 f i !, ~6!

the maximum collision rules lead to a constant transit
probability A(C)

;s,s8PC A~s→s8!5A~C!5
1

uCu
, ~7!

where we useduCu to denote the number of different states
the classC, and by defining

Ci[(
sPC

si , ~8!

Ci j [(
sPC

sisj , ~9!

we can evaluate the symmetric matrixVk by

Vk i j 5(C
P~C!S CiCj

uCu
2Ci j D . ~10!
9-2
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BOLTZMANN APPROXIMATION OF TRANSPORT . . . PHYSICAL REVIEW E 63 021109
The benefit of this result is that the double summation o
the 219 states is replaced by a single summation over 29
different classes. Since we will here only consider the ze
momentum case, we haveg50 in Eqs.~1! and ~6!. Hence,
the probabilityP(C) does not depend on the total mome
tum, and the classes can be grouped by summing over
label P. This results in 280 groups, each contributing a
319 matrix which can be precomputed, leading to a m
efficient evaluation. In fact, a number of classes contain o
a single state and will therefore not contribute, such that o
23 388 classes and 248 groups remain.

As a final note we mention that strictly speaking the
troduction ofCi j is not necessary, because its summation
Eq. ~10! can be evaluated immediately, yielding(CP(C)Ci j
5 f i f j1k i j . However, it will enable us to make a clos
connection with the colored version of the GBL model in t
next section.

III. COLOR IN GBL

We now introduce a color as a passive label for our p
ticles, i.e., the collisions are not affected by the color of
particles, and we denote the colors by red (r 51) and blue
(b50). For a ‘‘color-blind’’ observer this is still the norma
GBL model. But apart from randomly selecting a differe
output state, which conserves mass, momentum, and en
also the colors need to be randomly reassigned to the
ticles such that color is conserved as well. An example
such a collision is given in Fig. 1. It is obvious that we c
do the collision in two steps, a GBL-like collision followe
by a redistribution of the colors over the occupied chann
rather than combining both in a single collision. Note that
this model each channel has three states, it is empty or
cupied by either a red or a blue particle, which leads t
total of 319 different states. It is therefore different from

FIG. 1. An example of a equivalence class of size 9: mas

momentum (32 , 1
2A3), energy 3, and 2 red particles. The first ro

gives already all output states in the GBL model, the second
third row contain only color redistributions.
02110
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true 38-bits model, because in such a model a red and
particle can have the same velocity, while in our case thi
explicitly excluded.

We now denote bys5$sim% the state of a single node
where the first label refers to the velocity channel and
second label to the color. Since we exclude the possibility
two particles with the same speed but different color,
adopt the convention that if only a label for the velocity
used we have used a summation over color, e.g.,si5sir
1sib5si11si0. In fact, such quantities are the ones whi
would describe the system for the color-blind observer.

Since color is a passive label for the particles, the aver
occupation number is given byf ia5Pa f i , where f i was
already defined in Eq.~1! and we introduced the probabilit
of finding a red or blue particle byPr and Pb512Pr , re-
spectively. Note that an alternative but equivalent formu
tion can be obtained by introducing two different chemic
potentials in Eq.~1!, a r /b for the red andab /b for the blue
particles. A simple calculation shows that the connection
made by identifying ea5ear1eab and Pm5eam/(ear

1eab).
Apart from the additional color labels, the expression

the collision operator~3! is unchanged, but the probabilit
P(s) of finding states is now given by

P~s!5)
i

f ir
sir f ib

sib~12 f i !
12si. ~11!

Due to the increase in the number of states the transi
matrix has to be modified also. Note that a naive general
tion of Eq. ~4! would lead toP(s)5) im f im

sim(12 f im)12sim.
Such a generalization, however, would not take into acco
that only a single particle, either red or blue, can exist wit
given velocity. This exclusion leads to the above formu
tion.

In order to proceed we need to clarify the difference b
tween the colored and the uncolored model. In particular
equal-time correlation function of the fluctuationsdnim ,
which is obtained from thet50 case of the kinetic propaga
tor @3#

~Gk! im, j n5^dnim~k,t !dnj n* ~k,0!&, ~12!

where * denotes complex conjugation andG im, j n(k,0)
5d im, j n . In the Boltzmann approximation the different cha
nels are independent andk is in general found to be a diag
onal matrix. Although here fluctuations between partic
with different velocities are independent as well, this is n
true for the fluctuationsdnir anddnib with the same velocity
but different color. This is a direct consequence of the m
tual exclusion of a red and blue particle with the same
locity, in other words the fact that color is a passive lab
and hencek is given by

k im, j n5d i j f im~dmn2 f in!. ~13!

Following a similar derivation as for the GBL model@3# the
linearized collision operator can be obtained and this resu
combined with the matrixk, in the symmetric matrix

3,

d

9-3
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~Vk! im, j n5
]D im

] f ks
kks, j n5(

s,s8
P~s!A~s→s8!~sim8 2sim!sj n ,

~14!

where we have adopted the Einstein summation conven
By introducing the colored equivalence classesC*
5(M ,P,E,R), with R5( isir the total number of red par
ticles, we can write this in a form similar to Eq.~10!. How-
ever, since the collision of particles and the redistribution
colors are independent we can continue a little further. T
probability of a state can be written asP(C* )
5Pr

RPb
M2RP(C), the size of a colored class asuC* u

5(R
M)uCu, the summation (sPC* sim5Ci(R2m

M21), and
(sPC* simsj n5Ci j @(R2m

M21)d i j dmn1(R2m2n
M22 )(12d i j )#, where

we used the numerical value of the color labelsm andn in
the last expressions. Finally by noticing that(C*
5(C(R50

M , we find an expression for which the summati
over the number of red particlesR can be evaluated exac
and after some algebra we obtain

~Vk! im, j n5PmPn(C
P~C!S CiCj

uCu
2Ci j D

1Pm~dmn2Pn!(C
P~C!S CiCj

M uCu
2d i j Ci j D ,

~15!

where Eq.~10!, the uncolored expressionVk i j , is immedi-
ately recognized in the first term.

IV. LANDAU-PLACZEK THEORY

For a detailed derivation of the Landau-Placzek theory
the GBL model we refer the reader to Ref.@3#. Here we will
only highlight some of the results and focus on the colo
version of the GBL model, which can be derived in an ana
gous manner and resembles the results of a colored
model @5#. However, all expressions for the colored mod
reduce to expressions for the proper GBL model by summ
over all color indices.

In order to proceed we first need to introduce a colo
version of the thermal scalar product@7,10#

^AuB&5 (
im j n

A~cim!k im, j nB~cj n!, ~16!

and adopt the same convention that the matrixk is attached
to the right vector, i.e.,uB& im5k im, j nB(cj n). This colored
product was earlier introduced by Hanon and Boon on p
of the matrix @5#. The second ingredient which is require
are the collisional invariants, which are left eigenvectors
V with zero eigenvalue. Four of them, mass, momentu
and energy, already follow directly from the GBL model.
the colored model a fifth invariant emerges due to the f
that the number of red and blue particles are conserved
dependently. The sum of them giving the mass, which
02110
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already taken into account by the GBL model, leaving t
fifth invariant to be related to their difference, and we c
summarize the invariants by

^anuV50 Vuan&50, ~17!

uan&5{ u1&,ucx&,ucy&,u
1
2 c2&,udiff &}. ~18!

The invariantudiff & is a linear combination of the red an
blue mass vectors,uR& and uB&, and is fixed by constraining
it to be orthogonal to the other four invariants. This results

Rim5dmr , ~19!

Bim5dmr , ~20!

udiff &5
1

Pr
uR&2

1

Pb
uB&, ~21!

and udiff & becomes the difference between the normaliz
red and blue densities.

We now proceed by following the method introduced
Résibois and de Leener@11#, and consider the single-tim
step Boltzmann propagator leading to the eigenvalue pr
lem

e2ık•c~11V!uc~k!&5ez(k)uc~k!&, ~22!

^f~k!ue2ık•c~11V!5ez(k)^f~k!u, ~23!

wheree2ık•c has to be interpreted as a 38 dimensional di
onal matrix, and1 is the identity matrix. It can easily be
shown from the symmetries of the linearized collision ope
tor ~15!, that the problem can be split in two independe
19-dimensional problems. The first subproblem is the or
nal problem for GBL with the right eigenvector equation

e2ık•c~11V!kx~k!5ez(k)kx~k!, ~24!

where the matricesV and k are the normal GBL versions
and we explicitly included the later one to compare it w
the second subproblem

e2ık•c~11V8! f x8~k!5ez8(k) f x8~k!. ~25!

Here we used thatf is a diagonal matrix with elementsf i ,
and have denoted the color independent, symmetric matr
the second term of Eq.~15! by V8 f . The solution of the
second subproblem is similar to that of the GBL model,
beit that the thermal scalar product should be modified
using f as a kernel, rather thank.

The complete set of solutions for the full problem~22! is
now obtained by modifying the two sets of solutions for bo
subproblems with an additional color dependence

c im~k!5x i~k! c im~k!5S dmr

Pr
2

dmb

Pb
Dx i8~k!. ~26!
9-4
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TABLE I. The eigenvectors, currents, and eigenvalues to dominant order in the limitk→0.

Viscosity c'
(0)5c' j'5cl c' z'52nk2

Thermal diffusivity cT
(0)5s j T5cl s zT52DTk2

Sound damping c6
(0)5p6cscl j 65cl s6cs(cl

2 2p) z652(6csk1Gk2)
~self-!diffusion cdiff

(0)5(diff) j diff5cl (diff) zdiff52DCk2
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As in the case for the GBL model, the symmetries of t
matrices cause the left and right eigenvectors to be relate
fm(k)5eık•ccm(k)/Mm , and form a complete biorthonor
mal set

(
m

ucm&^fmu51 ^fmucn&5dmn , ~27!

where we usedm andn to label the different eigenfunction
and introduced the normalization constantsMm . Note that
the eigenvectors~26! that belong to a different subset a
already orthogonal by contracting the color label. From
physical point of view this is of course to be expected, b
cause this will ensure that the two sets cannot couple. If t
would, a color-blind observer would have been able to de
a difference between the GBL model and its colored relat

The next step in the procedure would be to realize that
slow hydrodynamic modes carrying the transport proper
havez(k)→0 for small values ofk. This justifies a Taylor
expansion of the eigenvectors and eigenvalues in term
uku, and we solve the resulting set of equations for succes
orders. However, since we have already indicated that
color modes and uncolored modes do not couple, we r
the reader to Ref.@3# for a detailed analysis and have liste
the results for the lowest order eigenvector, the current,
up to second order eigenvalues of the GBL model in Tabl
including the additional color mode which we have in o
model. These results contain the longitudinal and transv
velocity, cl 5 k̂•c and c'5 k̂'•c respectively, the micro-
scopic pressurep5 1

2 c2, and the entropys5p2cs
2 , where

the adiabatic speed of soundcs is determined such that th
microscopic pressure and entropy are orthogonal, i.e.,^sup&
50. The transport coefficients turn out to be the seco
order terms in the eigenvaluesz(2), which are the viscosity
n, thermal diffusivityDT , sound dampingG, and the~self-!
diffusion DC and follow from the second order equations

za
(2)52

K j aU 1

V
1

1

2 U j aL
^ca

(0)uca
(0)&

. ~28!

Although the existence of collisional invariants, and hen
zero eigenvalues, prevent us to invert the matrixV, the ex-
pression is formally correct, because one can show that
currentsj belong to the orthogonal complement of the n
space ofV. In addition we mention the fact that although th
transport coefficients do depend on the density and energ
the system, none of them depends on the fraction of red
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blue particles as follows directly from the two color indepe
dent subproblems~24! and~25! and is expected on the bas
of physical arguments.

An example of the full wave-vector dependent eigenva
spectrum is shown in Fig. 2. In the limituku→0 only the five
slow modes go to zero~the real part of the two sound damp
ing modes coincide!, confirming the absence of any spuriou
invariants due to the introduction of color. In the hydrod
namic regime of small wavevector we use the expressi
found in Table I to obtain the transport coefficients from t
eigenvalue spectrum, as is illustrated in Fig. 3. We also
dicated the generalized hydrodynamic regime, where

FIG. 2. Full eigenvalue spectrum of the Boltzmann propaga
of the colored GBL model as function of the wavevectoruku in
reciprocal lattice units. The density and energy density arer56.0
and e56.7/6.0, respectively. The spectrum is independent of
fraction of red particlesPr .
9-5



pa

by

e
on-

to
de-
-red

he

e
8

to
fast

-
p-
s
l

nly
es

-

ob

o-
o

gim

III
d
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transport properties become stronglyk-dependent, and the
kinetic regime, where the kinetic modes become of com
rable order as the hydrodynamic modes.

It has been shown that the dynamic structure factor

rS~k,v!52 Rê ru~eiv1ık•c212V!211 1
2 ur&, ~29!

in the Boltzmann approximation can be evaluated by@3#

rS~k,v!52 Re(
m

NmDm , ~30!

Nm[^rucm&^fmur&, ~31!

FIG. 3. The wave-vector dependent transport coefficients
tained from the small wave-vector approximation at~a! low density
r51.1 ande51.0, ~b! high densityr56.0 ande56.7/6.0. The
wave vectork is measured in reciprocal lattice units. In the hydr
dynamic regime I the transport properties are approximately c
stant. Regime II characterizes the generalized hydrodynamic re
where the transport properties become stronglyk dependent. At still
higher k values to regime crosses over into the kinetic regime
where the kinetic modes become of comparable order as the hy
dynamic modes.
02110
-

D m[
1

eıv2ızm(k)21
1

1

2
, ~32!

where property~27! has been used to eliminate the matrixV,
and the expression can be normalized after division
rS(k)5^rur& . Since the collisional invariantur& is a vector
that lies in the GBL part of the model, it is orthogonal to th
19 color modes, which therefore, as expected, do not c
tribute.

In the colored model we can follow a similar approach
obtain the red mass dynamic structure factor, which is
fined as the space and time Fourier transform of the red
density correlation@5#

^dr red~r,t !d r red~0,0!&, ~33!

where the red mass density is given byr red(r,t)
5( inir (r,t). Following the same procedure we obtain t
red mass dynamic structure factor

r redSred~k,v!52 Re(
m

N m
redDm , ~34!

N m
red[^Rucm&^fmuR&. ~35!

But sinceuR& does not fall completely within either of th
two subproblems, we now get a contribution from all 3
modes.

Apart from the five slow hydrodynamic modes related
the transport properties, one also obtain a number of
kinetic modes. In the hydrodynamic regime of smallk andv
these have Rezm(0),0 and decay exponentially. This is ex
ploited by the Landau-Placzek formula, for which one a
proximates Eq.~30! by summing only over the slow mode
and expanding up toO(k2). This also requires the partia
knowledge of the eigenvectors up to orderO(k). The shear
mode, however, does not contribute due to parity, and o
the thermal diffusivity, sound damping, and diffusion mod
remain for which we obtain@3#

N T
red5Pr

2NT5Pr
2^rur&

g21

g
1O~k2!, ~36!

N 6
red5Pr

2N65Pr
2^rur&

2g H 16
ık

cs
@G1~g21!DT#J 1O~k2!,

~37!

Ndiff
red5Pr

2Pb
2^diff udiff &1O~k2!, ~38!

where g511^sus&/^pup&. By using the normalization
r redSred(k)5^RuR&, we obtain for the Landau-Placzek ex
pression of the red mass dynamic structure factor

Sred~k,v!

Sred~k!
5

Pr
2^rur&

^RuR&

S~k,v!

S~k!

1
Pr

2Pb
2^diff udiff &

^RuR&

2DCk2

v21~DCk2!2
. ~39!
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FIG. 4. The red power spectrum at low densityr51.1, e51.0, Pr50.5 @a, b# and high densityr56.0, e56.7/6.0,Pr50.75@c, d#. The
wave vectors arekx5532p/256 @a, c# andkx52532p/256 @b, d#. The solid line is the Boltzmann prediction~34!, the dashed line is the
Landau-Placzek approximation~39!, and the points are simulation results~gridsize 2563256, time steps 3.53106). The wave vectork is
given in reciprocal lattice units,v in reciprocal time (2p/T, with T the total number of time steps!, and the spectral functions in reciproc
v units.
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This is the normal dynamic structure factor, but with an a
ditional diffusion peak at the same location as the one du
the thermal diffusivity.

In Fig. 4 we show results for the red mass dynami
structure factor for low and higher densities and two diff
ent wave vectors. We compare the Boltzmann~34! and
Landau-Placzek predictions~39! with simulations performed
on a 2563256 grid. As expected for the smaller wave vec
the agreement between them is good, but for the larger w
vector the Landau-Placzek curve, specially for the low
density, deviates significantly, while the Boltzmann pred
tion is still good. This is merely an illustration that we a
outside the hydrodynamic regime. As we can see from Fi
we are for the higher density already in the generalized
drodynamic regime, while for the lower density we ev
shifted to the kinetic regime.

We also can consider the fluctuations in the differen
between the normalized red and blue densities

rdiff~r,t !5
r red~r,t !

Pr
2

rblue~r,t !

Pb
. ~40!
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Following the same route this leads to a dynamical struct
factor containing terms of the typêdiff ucm&. Hence, it will
be completely independent of the modes found in the G
model, and the Landau-Placzek approximation leads t
single Lorentzian

Sdiff~k,v!

Sdiff~k!
5

2DCk2

v21~DCk2!2
. ~41!

Note that it is not dependent on the fraction of red and b
particles in the system. It also shows that the red mass
namic structure factor is a simple linear combination of t
normal and color difference dynamic structure factors, wh
only both coefficients depend on the fraction of red and b
particles in the system, a result which also could have b
obtained from the identityuR&5Pr ur&1Pr Pbudiff & and the
fact thatur& and udiff & are orthogonal.

In Fig. 5 an example of the color difference dynam
structure factor at a densityr510.0 obtained by simulations
is shown and compared with the theoretical curves. From
width of the peak at half-height the diffusion constant
9-7
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obtained. The simulations show an excellent agreement
theory. Simulations at very high densityr518.5 gave no
evidence for the unexpected coupling between the diffus
mode and any of the other hydrodynamic modes as
found for the 14-bit model@5#. As a possible explanation w
suggest that therdiff which was used depends in a nonline
way onr. This would therefore lead to a nonzero contrib
tion from the normal dynamic structure factor, and expla
the location and size of the additional peaks by being sm
contributions of the Brillouin peaks.

V. TRANSPORT COEFFICIENTS

The transport coefficients can now be obtained in t
ways. One can solve the eigenvalue problem~22! numeri-
cally for small wave vectors and use the formulas in Tab
to obtain the desired results, or, alternatively, use the Gre
Kubo relations~28!. The two routes are equivalent, and t
choice made is a matter of convenience. We will adopt h

FIG. 5. ~a! Dynamic structure factor of the diffusion fo
density r510.0, energy densitye50.8, and wave vectorkx

5123(2p/256). ~b! ~Self!-diffusion as a function of density fo
fixed energy densitye51.0. The points are simulation results, th
solid line is the theoretical prediction. The difference between B
zmann and Landau-Placzek is negligible. Simulations were don
a 2563256 system withPr50.75 and for time steps 13106.
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the second method, because it allows for a more efficient
accurate determination of the quantities of interest. Mo
over, we do not have to concern ourselves with the probl
which eigenvalue corresponds to which transport coefficie
In what follows we first will restrict ourselves to the unco
ored GBL model, because the transport coefficients are
dependent on the presence of color in the system. This
means that we postpone the discussion of the diffusion
later point.

A. Symmetries of the collision matrix

The solution of Eq.~28! requires us to find a vectorAa
such thatVuAa&5u j a&. This vector is not unique, becaus
one could add an arbitrary linear combination of collision
invariants, which are orthogonal to the currents. As an al
native one can decomposeu j a& in terms of eigenfunctions o
the collision matrixV defined by

Vucn&5vnucn&, ~42!

because by using a relation similar to~27! and the relation
between left and right eigenfunctions one obtains tha
transport coefficientLa is given by@7#

La52
1

^ca
(0)uca

(0)&
(

n

^ j aucn&u2

^cnucn&
S 1

vn
1

1

2D . ~43!

Note that since the currents are orthogonal to the collisio
invariants the eigenvalues appearing in the summation ar
nonzero.

For the 4-bits HPP model, 6- and 7-bits FHP models o
triangular lattice, 8- and 9-bits models on a square latt
and even for the 24-bits FCHC model, it turns out thatu j a&
itself is an eigenfunction ofV ~see Ref.@7# and references
therein!. In general, however, this is not the case and
current is a combination of a number of eigenfunctions.
order to understand which and how many eigenfunctions
coupled to a given transport property a more detailed an
sis of the matrixV is required.

Although the matrixV i j itself is not symmetric in its la-
bels, it obeys a number of other symmetries. Their origin
simply due to the symmetry of the lattice on which it
defined. In the case of a triangular lattice with hexago
symmetry and in the absence of a symmetry breaking
ture, such as an overall nonzero flow, the system should
invariant under any of the 12 transformations of the groupT
mapping a node on itself. These transformations are form
from the combinations of the rotationR over an anglep/3
and its multiples, and the reflectionSx in the x axis.

If we now let V act on an arbitrary vector(nanf (n),
where thef i

(n) form a complete set of basis vectors, w
obtain

V i j (
n

anf j
(n)5(

n
bnf i

(n) , ~44!

where thean andbn are some numerical coefficients. IfG is
a proper subgroup of the groupT of all transformations that

t-
on
9-8
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map a node on itself, and take the sum over all elemeng
PG acting on the above equations we get

V(
n

anx (n)5(
n

bnx (n), ~45!

where we have introduced a set of symmetry adapted vec
x (n) corresponding to the groupG by

x (n)5
1

uGu (
gPG

g~f i
(n)!, ~46!

and used thatt(V)5V for all tPT. Since in general
g(f i

(n))Þf i
(n) and using some general properties of gro

theory it can easily be seen that some of these vectors wi
identical. Therefore the number ofx ’s will be less than the
number off ’s and will span an invariant subspace ofV. If
the groupG would be either the identity or a noncomple
subgroup of the transformations inT their numbers could
also be the same.

It is important to observe that the transformationstPT
only transform channels into channels belonging to the sa
‘‘ring,’’ where a ring is formed by all channels which can b
obtained by applying all transformations inT on a specific
channel. In the GBL model such a ring would contain all s
channels corresponding to the same absolute velocity. O
the velocity zero would lead to a ring of one channel. If
extension would be made by including higher velocities, e
a 31-bits model, also rings with 12 channels exist. Beca
of the hexagonal lattice symmetry a ring can contain o
one, six, or twelve channels.

The fluctuations inside a single ring of 12 channels co
of course be written in terms of the 12 independent vec
cos(nu) and sin(nu), wheren50, . . . ,5 andn51, . . . ,6 re-
spectively, andu is the angle made by the direction of th
velocity with respect to the positivex axis. Using these as
our basis vectorsf (n), and the three groups$1,Sx%, $1,R3%,
and$1,R2,R4% as the subgroups we find thatV gives rise to
at most eight different invariant subspaces. Four of th
being one-dimensional are described by the symmetrie
cos(3u), sin(3u), and sin(6u), and the other four all being
two-dimensional and described by the sets$cos(u),cos(5u)%,
$sin(u),sin(5u)%, $cos(2u),cos(4u)%, and$sin(2u),sin(4u)%. The
different subspaces are automatically orthogonal. The
vectors spanning a two-dimensional subspace, however
only independent with respect to each other, but one
easily construct an orthogonal basis. Although we star
with the sine and cosine functions, this is not necessary,
cause the correct forms are automatically obtained from
full analysis.

The extension made to include the different rings
straightforward after realizing that a set of vectors can
made to correspond to each cos(nu) or sin(nu) by defining a
f for each ring as described above and to be zero elsewh
In this way a simple complete and orthogonal basis is c
structed, which decomposesV in invariant subspaces. In th
degenerate case that a ring contains only six channels s
of the vectors become identical or vanish. Of the eight s
spaces only six remain corresponding to 1, sin(u), cos(u),
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sin(2u), and cos(2u). The last subspace depends on the o
entation of the ring and is either cos(3u) or sin(3u). For the
zero-velocity channel only the subspace corresponding t
remains. Since in the GBL model the ring corresponding
velocity A3 is rotated 30 degrees with respect to the rings
velocity 1 and 2, seven different subspaces are found rel
to the symmetries

1 cx cy cxcy cx
22cy

2 cx~cx
223cy

2! cy~cy
223cx

2!.
~47!

The dimension of the first subspace is four, the next fo
subspaces are of dimension three and the last two of dim
sion two and one respectively, which follows from a simp
counting of contributions of different rings.

The arguments and reasoning presented here are gene
true and applicable to any lattice gas, although the outco
will of course depend on the underlying symmetry of t
system under consideration. The matrixk multiplies the dif-
ferent channels in a ring with the same factor and theref
will have the same invariant subspaces, which, of course
also valid forVk.

B. Temperature and Transport

The transport properties of the GBL model vary with tem
perature. Temperature, however, is not well-defined in
thermal lattice gas@12#. On the one hand we have the tem
perature as defined for a Fermion-gaskBT51/b @7#, on the
other hand we could define a kinetic temperaturekT5e @13#
by assuming a local version of the equipartition theore
which states that the mean kinetic energy per particle is p
portional to the temperature. The constantk5l2/2t2 acts
like the Boltzmann constant but depends on distance
tween neighboring lattice nodesl and the time stept. The
temperature according to 1/b leads to the possibility of nega
tive temperatures at higher densities, while the kinetic te
perature remains positive. The origin of the difference of
temperature scales lies in the fact that a Fermion-gas is u
to model a normal gas. We therefore cannot expect
model to behave as an ideal gas except in the low-den
limit.

Another important restriction is the limited set of comb
nations of densitiesr and energy densitiese that can be
simulated. The space to which they are confined is show
Fig. 6. Since we will show the transport coefficients for co
stant reduced temperatureu5eb/2, a few of those lines are
included. Note that the caseu51 with a constant energy
densitye corresponds to an athermal model.

For the current related to the shear viscosity we obtai
j'5cl c'5cxcy , where we have chosen the wave vector
be along thex axis of the system. It is now obvious from ou
discussion in the previous subsection that it lies in a thr
dimensional subspace, and hence at most three eigenf
tions of V are required in Eq.~43! to obtain the viscosity of
which the results are shown in Fig. 7. Moreover, by using
appropriate basis transformation based on those cons
ations, we do not even have to evaluate the full matrixV,
but only a 333 matrix. This results in a faster evaluatio
9-9
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better numerical accuracy, and, in principle, it even enab
us to obtain an analytic formula for the viscosity, althou
the expression would be rather lengthy.

Only in the limit u→0 do the transport coefficients sho
divergencies at the densitiesr51, 7, 13, and 19. This is a
direct consequence of the fact that in this zero tempera
limit the transition probability of particle exchange betwe
different energy levels goes to zero. At these specific de
ties each ring of particles is either completely filled or co
pletely empty and hence a static state is reached without
transport. Something similar is observed for the limitu
→`, although these divergencies are found atr50, 6, 12,
and 18. The viscosity curves for constant energy density
truncated at a densityr,19, which is simply due to the fac
that for the given energy density no higher density can
obtained in the GBL model~Fig. 6!.

The currentj T5cl s5cx(
1
2 c22cs

2) also lies in a three-
dimensional subspace. But in this case the subspace
contains the collisional invariantcx and therefore only the
two remaining eigenfunctions will contribute to the therm
diffusivity DT , which is shown in Fig. 8. Note that the curv
with e51.5 goes to zero at its highest density, which is no
numerical artifact. The currents of both sound damp
modes can be expressed as a linear combination of
eigenfunctions ofV, but one can obtain the sound dampi
also immediately from the identityG65 1

2 (g21)DT1 1
2 n.

The zero temperature limitu50 represents the ground
state of the model. This means that only in one of the rin
particles are able to move. All channels on every node w
slower particles are completely filled, while those for fas
particles are completely empty. This immediately impli
that no energy exchange is possible, and hence the m
becomes similar to one or several independent FHP-I mo
with maximum collision rules. Moreover, since energy h
lost its significance, also the thermal diffusivity will disap
pear. The temperature limitu5` can be described in th
same way, albeit that the rings are filled in the opposite

FIG. 6. The space to which the densityr and energy densitye
are confined is given by the solid boundaries. Some constantu lines
are included, with the special caseu51 corresponding to the ather
mal model.
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der, or alternatively, as the zero temperature limit of the d
model of holes.

As a consequence the viscosity in both limits will corr
spond exactly to the ones obtained from the proper F
models and is almost identical to the curveu51024 in Fig.
7. The thermal diffusivity, however, is not contained in
FHP model, hence the limitu→0 and the caseu50 are truly
different. This is illustrated by the fact that forr.7 the limit
is almost identical to the one foru51024 ~Fig. 8! for which
the thermal diffusivity remains finite, and only in the rang
0,r,7 will it go to zero as suggested by that curve.

C. „Self-… Diffusion

In order to obtain the diffusion we could use a simil
analysis as in the previous section on the complete colo
matrix V. But, as we have already seen the current of
diffusion is perpendicular to all GBL modes, and is co
tained in the matrixV8 in Eq. ~25!. So we can restrict our-
selves to doing the analysis on this matrix only, where
also need to replace the diagonal matrixk by that of f.

Also in this case the a decomposition into subspaces
be made, which is obviously the same, and one finds th

FIG. 7. Shear viscosity as function of the densityr for various
values of~a! the reduced temperatureu and ~b! the energy density
e.
9-10
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BOLTZMANN APPROXIMATION OF TRANSPORT . . . PHYSICAL REVIEW E 63 021109
contributing eigenfunctions to the diffusion shown in Fig.
In contrast with the other transport coefficients, no diverg
cies are found in the zero temperature limit due to the co
plete filling of rings. A fact that easily can be understoo
because even if a ring is completely filled, a redistribution
colors is always possible, provided that the probability
having two colors at a node is nonzero.

The diffusion coefficient can also be obtained from sim
lations by using the momentum-propagation method@14# and
is based on the decay of the velocity autocorrelation fu
tion, which turns out to be algebraic. However, in the Bo
zmann expression of neglecting correlations it leads to

D5^vx
2~0!&S 1

12Z~1!
2

1

2D , ~48!

whereZ(1) is the normalized velocity autocorrelation fun
tion for a single time-step

Z~1!5
^vx~0!vx~1!&

^vx
2~0!&

. ~49!

FIG. 8. Thermal diffusivity as function of the densityr for
various values of~a! the reduced temperatureu and ~b! the energy
densitye.
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The angular brackets are here referring to an ensemble a
age andZ(1) can be evaluated by

^vx~0!vx~1!&5
1

r (
s

P~s!m~s!ux
2~s!, ~50!

wherem(s) andux(s) are the mass and average speed in
x direction of a state. With some algebra it can be shown t
the summation can be related to the colored linearized c
sion operator, the vectorudiff &, and its corresponding cur
rent. This results in the following expression for the diff
sion

D52
^ j diffu j diff&

^diff udiff & S ^ j diffu j diff&

^ j diffuVu j diff&
1

1

2D , ~51!

and comparison with Eq.~28! shows that this result would
have been the true Boltzmann diffusion if the current h
been an eigenfunction ofV, as for instance in an FHP
model. As mentioned before, however, the current is co
posed of three eigenfunctions. Nevertheless, this estim
could be used as a first approximation to the Boltzma

FIG. 9. Self-diffusion as function of the densityr for various
values of~a! the reduced temperatureu and ~b! the energy density
e.
9-11
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RONALD BLAAK AND DAVID DUBBELDAM PHYSICAL REVIEW E 63 021109
value and is usually correct within a few percent@7#, which
explains why the difference between the value for the dif
sion obtained by this method and the one obtained from
~43! is negligible.

VI. DISCUSSION

In order to calculate transport coefficients in the Bol
mann approximation, we developed a generally applica
scheme which allows for a fast and in principle analytic
evaluation in the case of no-flow. At the cost of some e
ciency it could also be extended to include a drift veloci
We use the scheme to evaluate the viscosity, thermal d
sivity, and sound damping in the two dimensional GB
model, but it can easily be extended to other models
higher dimensions. In order to evaluate the~self-! diffusion,
we extended the model by attaching a passive color labe
the particles and confirmed those results by the use of
Boltzmann approximation of the decay of the velocity au
correlation function. Some artificial behavior, as diverge
cies in the transport properties is observed, but can be c
pletely understood.

A comparison of the dynamical structure factors in t
colored and uncolored model obtained from simulations w
the theoretical curves, show an excellent agreement. In
hydrodynamic regime the agreement between the Boltzm
expression and the Landau-Placzek formula is good.
. E
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,
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A final note is made about the confirmation of transp
coefficients in simulation. It is virtually impossible to accu
rately measure a transport coefficient from a lattice-gas si
lation for a specific combination of density and temperatu
A Poiseuille viscometer fits a parabolic profile to the sim
lation momentum-density profile. Since the transport coe
cients are velocity dependent, due to the lack of Galile
invariance of LGA models, several measurement w
decreasing velocities should be undertaken, where the z
velocity transport value could be extrapolated by fitting t
data with a curve. However, the density and temperat
across the channel vary strongly. Another possibility is
measure the transport coefficient from the dynamic struc
factor obtained from a simulation. The width of the chann
and the wave vector should be chosen in the hydrodyna
area, i.e., the wave vector times the mean-free path shoul
much smaller than unity. The amount of simulation requir
to accurately extract the transport coefficients is huge. Th
fore, the Boltzmann approximation provides a cheap alter
tive, which turns out to be accurate enough for many pra
cal purposes, even at high densities.
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